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Approaching the Galactic center

• zoom-in towards the compact radio source (Sgr A*) – NIR

wavelengths (Schödel+14): (a) Spitzer/IRAC, (b) ISAAC multicolor,

(c) NACO/VLT

• Nuclear Star Cluster: one of the densest clusters in the Galaxy

⇐⇒ (super)massive black hole (SMBH) of 4× 106 M�
(Eckart+17, Genzel+10)

• enables monitoring individual objects as well as study cluster

properties as a whole 2



Approaching the Galactic center – a unique laboratory

• the inner 1 pc: unique laboratory – a mutual interaction of stars, gas

and dust in the potential of the SMBH
3



Our group - Recent results
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Our group - Recent results

Eckart+17 arXiv:1703.09118

Some of these can be tested in the near future...
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Our group - Recent results

Credit: ESO/M. Parsa/L. Calçada

Parsa, Eckart, Shahzamanian, Karas, Zajaček, Zensus and Straubmeier

ApJ 845, 2017
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My research topics

• fundamental features of the Nuclear Star Cluster known (Eckart+17,

Buchholz+09, Genzel+10)

• BUT many open questions remain ⇐⇒ topics investigated in the

thesis:

1. Star-formation close to the black hole → presence of young,

dust-embedded sources or “D” sources?

2. Interaction of stars with their environment → presence of many

bow shocks

3. Fate of stellar remnants (white dwarfs, neutron stars, and stellar

black holes) – can they be detected?

4. Sgr A* – Is it really a black hole? Do we know all the parameters

(mass, spin, charge)?
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My research topics
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Research topics

Interaction

gravitational electromagnetic magnetohydrodynamic

between
and

Modelling DSO/G2 Charge of the SMBH
Interaction modes

of neutron stars

9



Research topics

Interaction

gravitational electromagnetic magnetohydrodynamic

between
and

Modelling DSO/G2 Charge of the SMBH
Interaction modes

of neutron stars

9



Modelling Dusty S-cluster Object(s)



Observational motivation

Originally known as the gas cloud G2 that is going to “feed” the starved

black hole...

ESO/MPE/Marc Schartmann 11



Observational motivation

• a dusty object heading fast towards the black hole (Gillessen+12,

Eckart+13)

• an object of interest because of its ’cold’ appearance and fast

approach to the black hole

• Basic Questions:

(a) Is it a colder gas clump in the ionized environment of the central

cluster?

(b) Or is it a dust-enshrouded star at a certain stage of its evolution?

(c) How can one discriminate between these cases?

(d) Can some of the dusty material detach from the object and reach the

black hole?
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Observational motivation

13



Observational motivation–More similar dusty sources

Very young stellar objects (∼ 0.1Myr) close to Sgr A*? (Peissker,

Valencia-S. et al., in prep) 14



Basic observational constraints

• observed in NIR mainly as “cold” L’-band continuum source

(3.8µm)

• infrared-excess source, H − Ks > 2.3, Ks − L′ > 3

• source of broadened emission lines (Brγ, Paα, HeI)

• source of polarized continuum emission in Ks band

(Shahzamanian, Eckart, Zajaček+16)

Figure 1: Brγ line emission maps – does not behave as a gas cloud.

Valencia-S., M.; Eckart, A.; Zajaček, M.+15.
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Arguments for the compactness

Behaviour of a Core-less Cloud

Observations (Brγ recombination line)

16



Roadmap for solving DSO nature

Dusty S-cluster Object (DSO/G2)

compact source tidal stretched, extended source

thermal non-thermal

NIR-excess continuum

morphology 

dust-enshrouded star

polarized non-polarized

non-spherical

mag. eld

spherical
or depolarization ?

stable orbit drag/inspiral

core-less cloudnon-polarized polarized

neutron star wind nebula

depolarization?

OR heavy mass loss ?

(massive envelope,

binary disruption)

?
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Spectral Energy Distribution: simple power-law

and blackbody fit
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DSO/G2 as a dust-enshrouded star

The model of a young star in accretion phase - Several possible

contributions to the continuum and line emission:

ow shock

DSO stellar model - components 

Sgr A*
rpambient plasma

Changes along the orbit
- increase in bow shock density

- change of internal configuration

  (disk precession - bipolar outflow)

- interaction with ambient medium

- change of the star-envelope

   viewing angle

ou

disk wobbling/precession

19



Bow shocks close to the Galactic centre

Relative stellar velocities vrel = v? − va mostly supersonic,

M≡ vrel/cs > 1
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Bow shocks close to the Galactic centre

Observed comet-shaped structures (X3 and X7) close to the GC:

Muzic+10:

21



DSO/G2 as a dust-enshrouded star: Basic geometry
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Radiative transfer model: Simulated image

bow shock
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Radiative transfer model: Model Spectral Energy Distribution
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Radiative transfer model: Linear polarization in Ks band as

function of inclination
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Modelling Dusty S-cluster Objects: Summary

The model of a dust-enshrouded star can explain:

• the NIR continuum emission

• H- and Ks-band emission dominated by scattered dust emission

• L′- and M-band emission dominated by thermal dust emission

• Doppler-broadened emission lines (Brγ, Paα, HeI) by inflow or

outflow to/from the star

• linearly polarized continuum emission in Ks band with pL ' 30%

→ a star with a non-spherical envelope (bipolar cavities, bow shock)

• in the end the source does not disintegrate and “survives” (unlike

the gas cloud)

26
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Modelling Dusty S-cluster Objects: Summary

Di use cloud

Dust-enshrouded star

27



Cologne-Prague-Kiel meetings 2013-2017

Read the final report in the Observatory magazine in December:

28



Radiative transfer model: Inclination dependence
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