Chaotic motion in the Johannsen-Psaltis spacetime

Ondřej Zelenka

Institute of Theoretical Physics, Charles University in Prague

October 24, 2017

Ondřej Zelenka Chaotic motion in the Johannsen-Psaltis spacetime

- "No-hair" theorem
- Kerr hypothesis

The Kerr spacetime: symmetries \implies integrals of geodesic motion:

- stationarity \implies energy E,
- axisymmetry \implies z-component of angular momentum L_z ,
- a "hidden symmetry" \implies Carter constant \mathcal{K} .

Thus, geodesic motion in the Kerr spacetime background is integrable.

Integrability broken by perturbation:

- increasing the number of degrees of freedom,
- reducing the system's degree of symmetry.
- "Non-Kerr" spacetime:
 - family of spacetimes which parametrically deviate from the Kerr spacetime,
 - typical feature of non-Kerr spacetime: geodesic non-integrability.

Detection:

- gravitational wave signals,
- electromagnetic signals,

from EMRIs (Extreme Mass Ratio Inspiral). Analysis methods:

- frequency analysis,
- recurrence analysis.

Geodesic motion in the Johannsen-Psaltis spacetime

Metric:

$$\mathrm{d}s^{2} = g_{tt}\mathrm{d}t^{2} + g_{rr}\mathrm{d}r^{2} + g_{\theta\theta}\mathrm{d}\theta^{2} + g_{\phi\phi}\mathrm{d}\phi^{2} + 2g_{t\phi}\mathrm{d}t\mathrm{d}\phi \quad (1)$$

- Parameters: M, a, ϵ_2 , ϵ_3 , ϵ_4 ...
- Motion generated by the action

$$S = \int_{\tau_1}^{\tau_2} \mathcal{L} d\tau, \quad \mathcal{L} \left(x^{\mu}, \dot{x}^{\mu} \right) = \frac{m}{2} g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} \tag{2}$$

• Autonomous system (evolution parameter τ) \implies conservation of the Hamiltonian

$$\mathcal{H} = \frac{1}{2m} g^{\mu\nu} p_{\mu} p_{\nu} \tag{3}$$

Integrals *H*,*E*,*L_z* (and in the Kerr case *K*) are independent and in involution ({*I_i*, *I_j*} = 0)

Calculated using:

- program written in C,
- RK4 algorithm,
- accuracy tracked by $\Delta \mathcal{L}_{rel}$.

- A plane in the phase space of a system
- Used here: the equatorial plane $heta=\pi/2$ with $\dot{ heta}\geq 0$
- Liouville-Arnol'd theorem: nested invariant circles in integrable case

Surface of section in an integrable system

Surface of section in an integrable system

Surface of section in the perturbed system

- KAM theorem: some circles remain after perturbation
- Poincare-Birkhoff theorem: island chains

Surface of section in the perturbed system

Surface of section in the perturbed system

Regular trajectories:

- fundamental frequencies ω^r , ω^{θ}
- rotation number $\omega = \omega^r / \omega^{\theta}$

Take angles between consecutive points: $\vartheta_n = \arg[x_n, x_{n+1}]$

for regular trajectories

$$\nu_{\vartheta} = \lim_{N \to \infty} \frac{1}{2\pi N} \sum_{i=1}^{N} \vartheta_i = \omega$$
(4)

• alternative: frequency analysis (Laskar, 1993)

- ν_ϑ can be calculated for a chaotic trajectory as well
- in an integrable system: strictly monotonic function of the initial condition
- non-integrable system: non-monotonic variations when passing through chaotic zones

Rotation number in an integrable system

Rotation number in the perturbed system

p

0.003 0.002 0.001 0 -0.001 -0.002 -0.003 ā 0.78 $\frac{13}{17}$ $\frac{19}{25}$ ν_{ϑ} 0.76 $\frac{3}{4}$ 0.74 3.22 3.225 3.23 r

Ondřej Zelenka Chaotic

Chaotic motion in the Johannsen-Psaltis spacetime

Deviation vector: between two infinitesimally close trajectories

$$\ddot{\xi}^{\mu} + \frac{\partial \Gamma^{\mu}{}_{\kappa\lambda}}{\partial x^{\nu}} \dot{x}^{\kappa} \dot{x}^{\lambda} \xi^{\nu} + 2 \Gamma^{\mu}{}_{\kappa\lambda} \dot{x}^{\kappa} \dot{\xi}^{\lambda} = 0$$
(5)

$$\Xi^2 = g_{\mu\nu}\xi^{\mu}\xi^{\nu} \tag{6}$$

mLCE =
$$\lim_{\tau \to \infty} \frac{1}{\tau} \log \left[\frac{\Xi(\tau)}{\Xi(0)} \right]$$
 (7)

- regular trajectory: $\Xi(\tau) \sim \tau$, mLCE = 0
- chaotic trajectory: $\Xi(\tau) \sim e^{\lambda \tau}$, mLCE = λ

.

Lyapunov exponents

э

э

Lyapunov exponents

Ondřej Zelenka Chaotic motion in the Johannsen-Psaltis spacetime

It was shown by clear numerical examples using different methods that geodesic motion in the Johannsen-Psaltis spacetime corresponds in general to a non-integrable system. Any questions?

∃ → < ∃</p>

э